Cho tập hợp có vô hạn phần tử \(D=\left\{\frac{2}{5};\frac{1}{2};\frac{6}{11};\frac{4}{7};\frac{10}{17};...\right\}\) (Các phần tử trong tập hợp được viết theo thứ tự tăng dần và được đánh số thứ tự từ 1). Tìm phần tử dạng tổng quát và tính giá trị phần tử thứ 2015 của D.
Trong mặt phẳng Oxy cho hai đường thẳng có phương trình \(y=-\frac{3}{4}x+2\frac{1}{2}\) (1) và \(y=\frac{4}{5}x+\frac{7}{2}\) (2)
a) Vẽ đồ thị của hai hàm số trên.
b) Tìm tọa độ giao điểm \(A\left(x_A;y_A\right)\) của hai đồ thị trên (Để kết quả dưới dạng phân số)
c) Tính các góc trong tam giác ABC. Trong đó B, C thứ tự là giao điểm của hàm số (1) và hàm số (2) với trục hoành( Lấy nguyên kết quả trên máy).
(Đây là đề Casio nha)
Trong mặt phẳng Oxy cho hai đường thẳng có phương trình \(y=-\frac{3}{4}x+2\frac{1}{2}\) (1) và \(y=\frac{4}{5}x+\frac{7}{2}\) (2)
a) Vẽ đồ thị của hai hàm số trên.
b) Tìm tọa độ giao điểm \(A\left(x_A;y_A\right)\) của hai đồ thị trên (Để kết quả dưới dạng phân số)
c) Tính các góc trong tam giác ABC. Trong đó B, C thứ tự là giao điểm của hàm số (1) và hàm số (2) với trục hoành( Lấy nguyên kết quả trên máy).
(Đây là đề Casio nha)
Gọi n là số tự nhiên nhỏ nhất lớn hơn 1, thỏa mãn \(\frac{n\left(n+1\right)\left(2n+1\right)}{6n}\) là số chính phương.
Gọi n là số tự nhiên nhỏ nhất lớn hơn 1, thỏa mãn \(\frac{1^2+2^2+...+n^2}{n}\) là số chính phương. Tính \(A=n^5+n^4+n+2015\)
Gọi n là số tự nhiên nhỏ nhất lớn hơn 1, thỏa mãn \(\frac{1^2+2^2+...+n^2}{n}\) là số chính phương. Tính \(A=n^5+n^4+n+2015\) .
Cho \(g\left(x\right)=\frac{x+x^2+x^3+...+x^{2014}}{\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x^3}+...+\frac{1}{x^{2014}}}\) . Tìm chữ số đơn vị và chữ số hàng chục của g(2014).
Gọi n là số tự nhiên nhỏ nhất lớn hơn 1, thỏa mãn \(\frac{1^2+2^2+...+n^2}{n}\) là số chính phương. Tính \(A=n^5+n^4+n+2015\)
Gọi n là số tự nhiên nhỏ nhất lớn hơn 1, thỏa mãn \(\frac{1^2+2^2+...+n^2}{n}\) là số chính phương. Tính \(A=n^5+n^4+n+2015\)