Để giải bài này, ta xét bất đẳng thức phụ :
\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)
Áp dụng : \(S=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{25}}>2\left(\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+\sqrt{5}-\sqrt{4}+...+\sqrt{26}-\sqrt{25}\right)=2\left(\sqrt{26}-\sqrt{2}\right)=2\sqrt{26}-2\sqrt{2}>2\sqrt{25}-3=10-3=7\)Vậy S > 7