Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
kikyou

S=1/2^3+1/3^3+1/4^3+....+1/2009^3

chứng minh rằng:S<1/4

soyeon_Tiểu bàng giải
3 tháng 7 2016 lúc 22:02

Đầu tiên ta chứng minh \(\frac{1}{n.n}< \frac{1}{\left(n-1\right).\left(n+1\right)}\)(n thuộc N*)

Ta có: \(\frac{1}{\left(n-1\right).\left(n+1\right)}=\frac{1}{\left(n-1\right).n+\left(n-1\right)}=\frac{1}{n.n-n+n-1}=\frac{1}{n.n-1}>\frac{1}{n.n}\)

\(S=\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2009^3}< \frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2008.2009.2010}\)

\(S< \frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2008.2009.2010}\right)\)

                                                                   \(S< \frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2008.2009}-\frac{1}{2009.2010}\right)\)

\(S< \frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2009.2010}\right)\)

\(S< \frac{1}{2}.\frac{1}{2}=\frac{1}{4}\)

=> S < 1/4 (đpcm)

Ủng hộ mk nha ^_-


Các câu hỏi tương tự
Hà Trung Chiến
Xem chi tiết
THIÊN SỨ
Xem chi tiết
Nguyên Huyền
Xem chi tiết
Lê Văn Tư
Xem chi tiết
pham van chuong
Xem chi tiết
abc
Xem chi tiết
Nguyễn Mạnh Quân
Xem chi tiết
kikyou
Xem chi tiết
Quách Hương Giang
Xem chi tiết