\(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{97.100}\)
\(S=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{97.100}\right)\)
\(S=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}.\frac{49}{100}=\frac{49}{300}\)
Ta có: \(S=\frac{1}{2.5}+\frac{1}{5.8}+....+\frac{1}{97.100}.\)
\(\Rightarrow3S=\frac{3}{2.5}+\frac{3}{5.8}+....+\frac{3}{97.100}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(\Rightarrow S=\frac{49}{100}:3=\frac{49}{300}\)
Vậy \(S=\frac{49}{300}\)
CHÚC BẠN HỌC TỐT
\(S=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{97\cdot100}\)
\(S=3\cdot\frac{1}{3}\cdot\left(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{97\cdot100}\right)\)
\(S=\frac{1}{3}\cdot\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{97\cdot100}\right)\)
\(S=\frac{1}{3}\cdot\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}\cdot\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}\cdot\left(\frac{50}{100}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}\cdot\frac{49}{100}\)
\(S=\frac{49}{300}\)
3S=3.(1/2.5+1/5.8+1/8.11+.....+1/97.100)
3S=3/2.5+3/5.8+3/8.11+......+3/97.100
3S=1/2-1/5+1/5-1/8+1/8-1/11+.....+1/97-1/100
3S=1/2-1/100
3S=49/100
S=49/100:3
S=49/300
Vậy S=49/300