\(S=3+3^2+3^3+...........+3^{100}\)
\(\Leftrightarrow\)\(3S=3^2+3^3+3^4+...........+3^{101}\)
\(\Leftrightarrow\)\(3S-S=3^{101}-3\)
\(\Leftrightarrow\)\(2S=3^{101}-3\)
\(\Leftrightarrow\)\(S=\frac{3^{101}-3}{2}\)
Vậy \(S=\frac{3^{101}-3}{2}\)
Ta có:3S=32+33+.............+3101
\(\Rightarrow\)3S-S=(32+33+..................+3101)-(3+32+...................+3100)
\(\Rightarrow\)2S=3101-3
\(\Rightarrow S=\frac{3^{101}-3}{2}\)
S = 3 + 3^2 + 3^3 + ... + 3^100 (2)
3S = 3^2 + 3^3 + ... + 3^101 (1)
(1) trừ (2) ---> 2S = 3^101 - 3 = 3(3^100 - 1)
---> S = 3(3^100 - 1)/2