\(\frac{x^2y-y^2+x^2-y+x^2y^2-1}{x^2y+y^2+x^2+y+x^2y^2+1}=\frac{\left(x^2y-y\right)+\left(x^2y^2-y^2\right)+\left(x^2-1\right)}{\left(x^2y+y\right)+\left(x^2y^2+y^2\right)+\left(x^2+1\right)}\)
=\(\frac{\left(x^2-1\right)\cdot\left(y^2+y+1\right)}{\left(x^2+1\right)\cdot\left(y^2+y+1\right)}\)=\(\frac{x^2-1}{x^2+1}\)