Cho m, n số nguyên dương, m2 + n2 + m chia hết cho mn. CMR m là số chính phương
Đồ thị hàm số y=x2 đi qua hai điểm (\(\sqrt{2}\);m)và(-\(\sqrt{3}\);n).Khi đó giá trị của biểu thức m2-n2 bằng
A.5 B.-1 C.1 D.-5
cho biểu thức
M = 2 √ x /√ x − 3 − x + 9 √ x/ x − 9 = 2 𝑥/ 𝑥 − 3 − 𝑥 + 9 𝑥 /𝑥 − 9 và N = x + 5 √ x/ x − 25 𝐵 = 𝑥 + 5 𝑥 𝑥 − 25 với x ≥ 0 , x ≠ 9 , x ≠ 25 𝑥 ≥ 0 , 𝑥 ≠ 9 , 𝑥 ≠ 25
1, rút gọn M
2 Tìm các giá trị của x thỏa mãn M/N.(căn x + 3)=3x-5
cho m n là số tự nhiên thỏa mãn m2-2020n2+2022 chia hết cho m,n chứng minh rằng m,n là hai số lẻ và nguyên tố cùng nhau
Giải (copy)
Nếu m,n là 2 số chẵn thì m2- 2023n2+ 2022 không chia hết cho 4 và mn chia hết cho 4 suy ra m2-2023n2+2022 không chia hết cho mn (loại)
nếu m,n khác tính chẵn lẻ thì m2- 2023n2+ 2022 lẻ và mn chẵn do đó m2-2023n2+2022 không chia hết cho mn (loại)
Vậy m,n là những số lẻ
Gọi (m,n) = d => m2- 2023n2 ⋮ d2 ; mn ⋮ d2 mà m2- 2023n2 + 2022 ⋮ mn nên 2022 ⋮ d2
Mặt khác 2022 = 2.3.337 tức 2022 không có ước chính phương nào ngoài 1 do đó d2 = 1 => d = 1 => (m,n) =1 vậy m,n là hai số nguyên tố cùng nhau .
Em chưa hiểu tai sao
Nếu m,n là 2 số chẵn thì m2- 2023n2+ 2022 không chia hết cho 4
thầy Cao Lộc phân tích cho em với ạ
2. Cho tam giác ABC vuông tại A có BC = a, AC = b, AB = c. Đ/cao AD. Vẽ DE ⊥⊥ AB tại E, DF ⊥⊥ AC tại F. Cho BE = m, CF = n, AD = h.
C/m a) mn=c3b3mn=c3b3
b) 3h2 + m2 + n2 = a2
c) a.m.n = h3
Cho biểu thức:\(A=\left(\sqrt{m+\frac{2mn}{1+n^2}}+\sqrt{m-\frac{2mn}{1+n^2}}\right)\sqrt{1+\frac{1}{n^2}}\)
a. Rút gọn A
b. Tính A với \(m=\sqrt{56+24\sqrt{5}}\)
c.Tìm GTNN của A
Với giá trị nào của m thì mỗi PT sau có nghiệm kép ? Tìm nghiệm kép đó?
a) mx2 + 2(m + 2) x + 9 = 0 b) x2 – 2(m - 4) x+( m2 + m + 3 ) = 0
c)( m + 1) x2 – m3x + m2 ( m – 1) = 0 d) (m + 3) x2 – mx +m = 0
Với n là số tự nhiên, chứng minh đẳng thức:
n + 1 2 + n 2 = n + 1 2 - n 2
Viết đẳng thức trên khi n là 1, 2, 3, 4, 5, 6, 7
`mx^2 -2(m+1)x+1-3m=0`
1. CMR: PT đã cho luôn có nghiệm với mọi m
2. Với x khác 0, `x_1 ;x_2` là 2 nghiệm phân biệt của PT. Tìm min \(x_1^2+x_2^2\)