Ta có: \(A=\dfrac{2x}{1-x^3}+\dfrac{1}{x^2-x}+\dfrac{1}{x^2+x+1}\)
\(=\dfrac{-2x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{x^2+x+1}\)
\(=\dfrac{-2x^2+x^2+x+1+x^2-x}{x\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{1}{x\left(x-1\right)\left(x^2+x+1\right)}\)
Thay x=10 vào A, ta được:
\(A=\dfrac{1}{10\cdot\left(10^3-1\right)}=\dfrac{1}{10\cdot999}=\dfrac{1}{9990}\)