\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
=> 2S = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
=> 2S - S = ( \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\) ) - ( \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\))
S = 1 - \(\frac{1}{2^{10}}\)
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}\)
=> \(2S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
=> \(S=1-\frac{1}{2^{10}}\)
Study well ! >_<
S=1/2+1/22+1/23+.....+1/210
\(\Rightarrow\)2S = 1+1/2+....+1/29
\(\Rightarrow\)2S-S=1-1/210
\(\Rightarrow\)S=1023/1024