\(\frac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(=\frac{\left(x-y+z\right)^2}{\left(x-y\right)^2-z^2}\)
\(=\frac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\frac{x-y+z}{x-y-z}\)
\(\frac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(=\frac{\left(x-y+z\right)^2}{\left(x-y\right)^2-z^2}\)
\(=\frac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\frac{x-y+z}{x-y-z}\)
rút gọn phân thức
(x^2+y^2+z^2-2xy+2xz-2yz)/(x^2-2xy+y^2-z^2)
bạn nào làm ra cách giải sớm mình cho 3tick
Rút gọn phân thức:
\(\frac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\)
\(\frac{\left(x-y\right)^3+3xy\left(x+y\right)+y^3}{x-6y}\)
\(\frac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
Rút gọn phân thức: \(\frac{\text{x^2+y^2-z^2-2zt+2xy-t^2}}{x^2-y^2+z^2-2yt+2xz-t^2}\)
Rút gọn phân thức: E= \(\frac{x^2+y^2-z^2-2zt+2xy-t^2}{x^2-y^2+z^2-2yt+2xz-t^2}\)
Cho x, y, z \(\ne\)0 và \(\frac{y^2+z^2-x^2}{2yz}+\frac{z^2+x^2-y^2}{2xz}+\frac{x^2+y^2-z^2}{2xy}=1\). Chứng minh rằng trong ba phân thức đã cho có một phân thức bằng 1 và một phân thức bằng -1.
Cho phân thức : A = x mũ 2 + y mũ 2 - z mũ 2 + 2xy/x mũ 2 - x mũ 2 + z mũ 2 + 2xz. Rút gọn phân thức rồi tính giá trị của biểu thức x = 0,y = 2009, z = 2010
\(Cho:\)x ; y ; z là các số khác nhau đôi một \(\left(x\ne y\right);\left(y\ne z\right);\left(x\ne z\right)\)sao cho : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Tính các tổng sau : \(1.A=\frac{\left(yz-3\right)}{x^2+2yz}+\frac{\left(xz-3\right)}{y^2+2xz}+\frac{\left(xy-3\right)}{z^2+2xy}\)
\(2.B=\frac{\left(x^2-2yz\right)}{x^2+2yz}+\frac{\left(y^2-2xz\right)}{y^2+2xz}+\frac{\left(x^2-2xy\right)}{x^2+2xy}\)
rút gọn: x^2+^y2+z^2-2xy-2zx-2yz/x^2-2xy-y^2-z^2
Rút gọn phân số
\(\frac{2xy-x^2+z^2-y^2}{-x^2+y-z^2+2xz}\) .
Nguyễn Huệ Lam giúp nha