đâu khó đâu cái này lớp 6 chứ 8 cái gì
Xem lại đề là b2(c2 - a2) hay.b4(c2 - a2) nhé. Bạn phân tích nhân tử cho tử và mẫu rồi rút gọn là ra nhé. Không khó đâu bạn. Bạn thử làm xem nếu bí quá thì inbox mình chỉ cho
đâu khó đâu cái này lớp 6 chứ 8 cái gì
Xem lại đề là b2(c2 - a2) hay.b4(c2 - a2) nhé. Bạn phân tích nhân tử cho tử và mẫu rồi rút gọn là ra nhé. Không khó đâu bạn. Bạn thử làm xem nếu bí quá thì inbox mình chỉ cho
rút gọn phân thức:
\(S=\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
rút gọn phân thức\(\frac{a^2\cdot\left(b-c\right)+b^2\cdot\left(c-a\right)+c^2\cdot\left(a-b\right)}{a^4\cdot\left(b^2-c^2\right)+b^4\cdot\left(c^2-a^2\right)+c^4\cdot\left(a^2-b^2\right)}\)
Rút gọn phân thức
\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
giúp mk nha
Rút gọn phân thức:\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
Ai làm xong đúng đầu tiên mik bấm đúng cho.
Bài 1 : Rút gọn
a)\(\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
b) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a+b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
Rút gọn biểu thức \(A=\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
Rút gọn phân thức :
\(\frac{a^3\left(b^2-c^2\right)+b^3\left(c^2-a^2\right)+c^3\left(a^2-b^2\right)}{a^2\left(b-c\right)-b^2\left(c-a\right)+c^2\left(a-b\right)}\)
Rút gọn phân thức
\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^2\left(b-c\right)-b^2\left(c+a\right)-c^2\left(a-b\right)+2abc}\)
Bài 1: Rút gọn
a) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a+b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
b)\(\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)