ta có: \(\left(a+b-c\right)^2-\left(a+b\right)^2+2c\left(a+b\right)\)
\(=\left(a+b-c-a-b\right)\left(a+b-c+a+b\right)+2c\left(a+b\right)\)
\(=\left(2a+2b-c\right).\left(-c\right)+2c\left(a+b\right)\)
\(=c\left(2a+2b-2a-2b+c\right)=c^2\)
\(\left(a+b-c\right)^2-\left(a+b\right)^2+2c\left(a+b\right)\)
\(=a^2+2ab+b^2-2bc+c^2-2ac-\left(a^2+2ab+b^2\right)+2ac+2bc\)
\(=a^2+2ab+b^2-2bc+c^2-2ac-a^2-2ab-b^2+2ac+2bc\)
\(=c^2\)