\(\frac{2^{15}.9^4}{6^6.8^3}\)
\(=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}\)
\(=\frac{2^{15}.3^8}{2^6.3^6.2^9}\)
\(=\frac{2^{15}.3^8}{2^{15}.3^6}\)
\(=3^2\)
\(=9\)
\(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(3.2\right)^6.\left(2^3\right)^3}=\frac{2^{15}.3^8}{3^6.2^6.2^9}=\frac{2^{15}.3^8}{3^6.2^{15}}=\frac{3^8}{3^6}=3^2=9\)
\(\frac{2^{15}\cdot9^4}{6^6\cdot8^3}=\frac{2^{15}\cdot\left(3^2\right)^4}{2^6\cdot3^6\cdot\left(2^3\right)^3}=\frac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=\frac{2^{15}\cdot3^8}{2^{15}\cdot3^6}=\frac{3^2}{1}=3^2=9\)
Ta có : \(\frac{2^{15}.9^4}{6^6.8^3}\)
= \(\frac{2^{15}.\left(3^2\right)^4}{\left(3.2\right)^6.\left(2^3\right)^3}\)
= \(\frac{2^9.2^6.3^{2.4}}{3^6.2^6.2^{3.3}}\)
= \(\frac{2^9.2^6.3^8}{3^6.2^6.2^9}\)
= \(\frac{2^9.2^6.3^6.3^2}{3^6.2^6.2^9}\)
= \(3^2\)
= \(9\)