\(D=\frac{\frac{88}{132}-\frac{33}{132}+\frac{60}{132}}{\frac{55}{132}+\frac{132}{132}-\frac{84}{132}}\)
\(D=\frac{\frac{115}{132}}{\frac{103}{132}}\)
\(D=\frac{115}{103}\)
D=\(\frac{\left(\frac{2}{3}-\frac{1}{4}+\frac{5}{11}\right).11.3.4}{\left(\frac{5}{12}+1-\frac{7}{11}\right).11.3.4}\)=\(\frac{\frac{11.3.4.2}{3}-\frac{11.3.4}{4}+\frac{11.3.4.5}{11}}{\frac{11.3.4.5}{12}+11.3.4-\frac{11.3.4.7}{11}}\)=\(\frac{11.4.2-11.3+3.4.5}{11.5+11.3.4-3.4.7}\)=\(\frac{11.\left(4.2-3\right)+60}{11.\left(5+3.4\right)-84}\)=\(\frac{11.5+60}{11.17-84}\)=\(\frac{115}{103}\)