\(\sqrt{3-2\sqrt{2}}=\sqrt{1-2\sqrt{2}+2}=\sqrt{\left(1-\sqrt{2}\right)^2}=\left|1-\sqrt{2}\right|\)
\(\sqrt{5-2\sqrt{6}}=\sqrt{2-2\sqrt{6}+3}=\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}=\left|\sqrt{2}-\sqrt{3}\right|\)
Mà\(1< \sqrt{2};\sqrt{2}< \sqrt{3}\)
\(\Rightarrow\sqrt{3-2\sqrt{2}}+\sqrt{5-2\sqrt{6}}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}\)
\(=\sqrt{3}-1\)
ta có: \(\sqrt{3-2\sqrt{2}}+\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}.\)
\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}=\sqrt{3}-1\)