\(=\frac{\left(2x+1\right)\left(x+1\right)+8-\left(x-1\right)^2}{x^2-1}.\frac{x^2-1}{5}=\)
\(=\frac{2x^2+3x+1+8-x^2+2x-1}{5}=\frac{x^2+5x+8}{5}\)
\(\left(\frac{2x+1}{x-1}+\frac{8}{x^2-1}-\frac{x-1}{x+1}\right)\cdot\frac{x^2-1}{5}\left(x\ne\pm1\right)\)
\(=\left(\frac{2x+1}{x-1}+\frac{8}{\left(x-1\right)\left(x+1\right)}-\frac{x-1}{x+1}\right)\cdot\frac{\left(x-1\right)\left(x+1\right)}{5}\)
\(=\left(\frac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{8}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\right)\cdot\frac{\left(x-1\right)\left(x+1\right)}{5}\)
\(=\left(\frac{2x^2+3x+1}{\left(x-1\right)\left(x+1\right)}+\frac{8}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\right)\cdot\frac{\left(x-1\right)\left(x+1\right)}{5}\)
\(=\frac{2x^2+3x+1+8-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(x-1\right)\left(x+1\right)}{5}\)
\(=\frac{\left(x^2+5x+8\right)\cdot\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)5}=\frac{x^2+5x+8}{5}\)
\(\left(\frac{2x+1}{x-1}+\frac{8}{x^2-1}-\frac{x-1}{x+1}\right).\frac{x^2-1}{5}\)
\(=\left(\frac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{8}{\left(x+1\right)\left(x-1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right).\frac{\left(x+1\right)\left(x-1\right)}{5}\)
\(=\left(\frac{2x^2+3x+1}{\left(x-1\right)\left(x+1\right)}+\frac{8}{\left(x+1\right)\left(x-1\right)}-\frac{x^2-2x+1}{\left(x+1\right)\left(x-1\right)}\right).\frac{\left(x+1\right)\left(x-1\right)}{5}\)
\(=\left(\frac{2x^2+3x+1+8-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x+1\right)\left(x-1\right)}{5}\)
\(=\left(\frac{x^2+5x+8}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x+1\right)\left(x-1\right)}{5}=\frac{x^2+5x+8}{5}\)
\(\left(\frac{2x+1}{x-1}+\frac{8}{x^2-1}-\frac{x-1}{x+1}\right)\cdot\frac{x^2-1}{5}\)
\(=\frac{\left(2x+1\right)\left(x+1\right)+8-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(x+1\right)\left(x-1\right)}{5}\)
\(=\frac{x^2+3x+1+8-x^2+2x-1}{5}\)
\(=\frac{5x+8}{5}\)
\(\left(\frac{2x+1}{x-1}+\frac{8}{x^2-1}-\frac{x-1}{x+1}\right)\cdot\frac{x^2-1}{5}\)
\(=\frac{\left(2x+1\right)\left(x+1\right)+8-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(x+1\right)\left(x-1\right)}{5}\)
\(=\frac{x^2+3x+1+8-x^2+2x-1}{5}\)
\(=\frac{5x+8}{5}\)
Bài làm:
đkxđ: \(x\ne\pm1\)
Ta có: \(\left(\frac{2x+1}{x-1}+\frac{8}{x^2-1}-\frac{x-1}{x+1}\right).\frac{x^2-1}{5}\)
\(=\left[\frac{2x+1}{x-1}+\frac{8}{\left(x-1\right)\left(x+1\right)}-\frac{x-1}{x+1}\right].\frac{\left(x-1\right)\left(x+1\right)}{5}\)
\(=\frac{\left(2x+1\right)\left(x+1\right)+8-\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{5}\)
\(=\frac{2x^2+3x+1+8-x^2+2x-1}{5}\)
\(=\frac{x^2+5x+8}{5}\)
Bài giải
\(\left(\frac{2x+1}{x-1}+\frac{8}{x^2-1}-\frac{x-1}{x+1}\right)\cdot\frac{x^2-1}{5}\)
\(=\frac{\left(2x+1\right)\left(x+1\right)+8-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x^2-1}{5}\)
\(=\frac{2x^2+3x+1+8-\left(x^2-2x+1\right)}{5}=\frac{2x^2+3x+1+8-x^2+2x-1}{5}=\frac{x^2+5x+8}{5}\)