a^3+b^3+c^3-3abc
<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc
<=>[(a+b)^3 +c^3] -3ab.(a+b+c)
<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)
<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)...
<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)
thay vào và rút gọn ta được:\(a+b+c\)
a^3+b^3+c^3-3abc
<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc
<=>[(a+b)^3 +c^3] -3ab.(a+b+c)
<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)
<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)...
<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)
thay vào và rút gọn ta được:\(a+b+c\)
Rút gọn phân thức sau:
\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
rút gọn các phân thức sau :
a) \(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\)
b) \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
Rút gọn các phân thức sau:
a) \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
b) \(\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(x+z\right)^2+\left(z-x\right)^2}\)
Rút gọn C=\(\dfrac{\text{ a^2b+b^2c+c^2a-ab^2-bc^2-ca^2}}{a^3\left(b^2-c^2\right)+b^3\left(c^2-a^2\right)+c^3\left(a^2-b^2\right)}\)
Cho a+b+c=2011
Tính giá trị biểu thức A=\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
Bài 1: Rút gọn biểu thức:
\(N=\frac{x\left|x-2\right|}{x^2+8x-20}+12x-3\)
Bài 2: Chứng minh rằng:
a. a3 + b3 = (a + b)3 – 3ab (a + b)
b. a3 + b3 + c3 – 3abc = (a + b + c) (a2 + b2 c2 – ab – bc – ca)
Câu 3: Rút gọn phân thức : \(\dfrac{\text{x^5 + x^5 +1}}{\text{x^2 + x +1}}\)
a/ x3 –x2 +1 b/ x3+x-1 c/ x3 –x2 –x+1 d/ x3-x+1
Câu 4:Rút gọn :\(\dfrac{\text{a^2 - ab - ac + bc}}{\text{a2 + ab - ac - bc}}\)bằng mấy
Bài 1 Rút gọn biểu thức
\(\frac{\left(x+\frac{1}{x^4}\right)-\left(x^4+\frac{1}{x^4}\right)-2}{\left(x+\frac{1}{x}\right)^4+x^2+\frac{1}{x^2}}.\frac{x^4+1999x^2+1}{2x^2}\)
Bài 2: Cho a,b,c thoả mãn
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^2}{c^2+ca+a^2}=1006\)
tính giá trị biểu thức
M=\(\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Rút gọn phân thức
a^+b^3+c^3-3abc/a^2+b^2+c^2-ab-ac-bc
Làm giùm mình với ạ mìh like cho