\((x+y)^3-(x-y)^3\)
\(=x^3+3x^2y+3xy^2+y^3-(x^3-3x^2y+3xy^2-y^3)\)
\(=6x^2y+2y^3\)
Cách khác:
Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\left(3x^2+y^2\right)\)
\(=6x^2y+2y^3\)