\(\left(x+y\right)^2+\left(x-y\right)^2+\left(x-y\right)\left(x+y\right)-3x^2\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)+\left(x^2-y^2\right)-3x^2\)
\(=x^2+2xy+y^2+x^2-2xy+y^2+x^2-y^2-3x^2\)
\(=3x^2+y^2-3x^2\)
\(=y^2\)
\(\left(x+y\right)^2+\left(x-y\right)^2+\left(x-y\right)\left(x+y\right)-3x^2\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)+\left(x^2-y^2\right)-3x^2\)
\(=x^2+2xy+y^2+x^2-2xy+y^2+x^2-y^2-3x^2\)
\(=3x^2+y^2-3x^2\)
\(=y^2\)
Rút gọn các biểu thức sau :
A = \(2x^2\left(-3x^3+2x^2+x-1\right)+2x\left(x^2-3x+1\right)\)
B = \(2x:\dfrac{1}{2}x+x^2\)
C = \(\left[1:\left(1+x\right)+2x:\left(1-x^2\right)\right]:\left(\dfrac{1}{x}-1\right)\)
D = \(\dfrac{x^2-y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}+\dfrac{y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}\)
E = \(\dfrac{\left|x-3\right|}{x^2-9}.\left(x^2+6x+9\right)\)
F = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
Rút gọn các biểu thức sau:
a/ \(\left(3x-1\right)^2-2\left(2-5x\right)-2\left(x^2^{^{ }}+x-1\right)\left(x-\dfrac{1}{2}\right)\)
b/\(\left(4x-y\right)\left(4x+y\right)-2\left(3x-2y\right)^2+\left(x-3y\right)^2\)
c/\(\left(2a-3b+4c\right)\left(2a-3b-4c\right)\)
d/\(\left(3a-1\right)^2+2\left(9a^2-1\right)\left(3a+1\right)\)
e/\(\left(3x-4\right)^2+\left(4-x\right)^2-2\left(3x-4\right)\left(x-4\right)\)
MK CÂNG GẤP Ạ AI NHANH MK SẼ VOTE Ạ
Rút gọn các biểu thức sau:
\(\left(x+y-z\right)^2+2\left(z-x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
1) Rút gọn biểu thức
\(\left(x+3\right)^3-\left(x-3\right)^3+3x\left(x-2\right)\)
2) Tính giá trị biểu thức
\(C=2\left(x^3-y^3\right)-3\left(x+y\right)^2\)VỚI x-y = 2
Rút gọn biểu thức \(M=\frac{x^2}{\left(x+y\right)\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\left(1+x\right)}-\frac{x^2-y^2}{\left(1+x\right)\left(1-y\right)}\)
Rút gọn các biểu thức sau:
a/ \(\left(x-2y^{ }\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
b/ \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
Rút gọn biểu thức :
a) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
b) \(\left(4x^2-3y\right).2y-\left(3x^2-4y\right).3y\)
c) \(3y^2\left[\left(2x-1\right)+y+1\right]-y\left(1-y-y^2\right)+y\)
Rút gọn biểu thức:
a) \(A=\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
b) \(B=3x^2\left(x+1\right)\left(x-1\right)-\left(x^2-1\right)\left(x^4+x^2+1\right)+\left(x^2-1\right)^3\)
c) \(C=\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)
d) \(D=\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x+1\right)\left(x-1\right)\)
Rút gọn biểu thức
a) \(2\left(x+y\right)^3+2\left(x-y\right)^3\)
b) \(\left(x-y\right)^3-\left(x+y\right)^3-3\left(x+y\right)^2\left(x-y\right)-3\left(x+y\right)\left(x-y\right)^2\)