Rút gọn các biểu thức sau:
C=\(\left(\frac{\sqrt{x}+1}{x-4}-\frac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right).\frac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}-3}\)(với \(x\ge0\),\(x\ne4,x\ne9\))
D=\(\left(\frac{\sqrt{x}+2}{x-9}-\frac{\sqrt{x}-2}{x+6\sqrt{x}+9}\right).\frac{x\sqrt{x}-3x-9\sqrt{x}-27}{\sqrt{x}-2}\)(với \(x\ge0,x\ne4,x\ne9\))
Cho biểu thức P=\(\frac{2\sqrt{x}}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)với \(x\ge0;x\ne4;x\ne9\)
a.Rút gọn biểu thức P
b.Tìm x để P=5
\(\left(\frac{x-5\sqrt{x}}{x-25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x-3}}\right)\)
\(\left(x\ge0\right)x\ne9\)\(x\ne25\)
a) rút gọn P
b) Tìm x \(\in\)Z
p\(\in\)Z
rút gọn biểu thức
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{3}{\sqrt{x}-3}\right).\frac{\sqrt{x}+3}{x+9}\) với\(x\ge0,x\ne9\)
Cho biểu thức C=\(\frac{x\sqrt{x}}{x-2\sqrt{x}-3}+\frac{\sqrt{x}+3}{3-\sqrt{x}}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}\)với \(x\ge0,x\ne9.\)
a/Rút gọn biểu thức C
b/Tìm x để biểu thức C đạt giá trị nhỏ nhất.
Cho biểu thức :\(A=\frac{\sqrt{x}}{1+\sqrt{x}}\) và \(B=\frac{\sqrt{x}-1}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}-\frac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
(với \(x\ge0;x\ne9;x\ne4\) )
1, Tính giá trị biểu thức A khi \(x=3-2\sqrt{2}\)
2, Rút gọn biểu thức B
3, Tìm giá trị nhỏ nhất của biểu thức P=A:B
Cho biểu thức: B = \(\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}+\frac{3x-9}{x-9}\right):\left(\frac{\sqrt{x}-2}{3}+1\right)\)với \(x\ge0;x\ne9\)
Rút gọn B
Rút gọn biểu thức :
\(P=\left(\frac{x+\sqrt{x}-4}{x-2\sqrt{x}-3}+\frac{\sqrt{x}-1}{3-\sqrt{x}}\right):\left(1-\frac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)
( \(x\ge0;x\ne4;x\ne9\)
Cho 2 biểu thức :
\(A=\frac{x+5\sqrt{x}}{x-25};B=\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{x-9}\) Với \(x\ge0\)và \(x\ne9;x\ne25\)
a, Tìm x để biểu thức \(A\)nhận giá trị bằng 0
b, Rút gọn biểu thức \(B\)
c, Đặt \(P=B:A\). So sánh P với 1