\(\frac{x+\sqrt{x}}{\sqrt{x}}-\frac{x-4}{\sqrt{x}+2}\) (*)
điều kiện xác định: \(x\ge0\)
(*) = \(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\)
\(=\sqrt{x}+1-\left(\sqrt{x}-2\right)\)
\(=\sqrt{x}+1-\sqrt{x}+2=3\)
ĐKXĐ: \(x>0\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\)
\(=\sqrt{x}+1-\left(\sqrt{x}-2\right)\)
\(=3\)