Điều kiện xác định \(0\le x\ne4\)
\(C=\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+2}+\frac{18\sqrt{x}}{4-x}\right):\frac{x+9}{4-x}\)
\(=\frac{\left(\sqrt{x}+2\right)^2-\left(\sqrt{x}-2\right)^2-18\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{x+9}{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+4\sqrt{x}+4-\left(x-4\sqrt{x}+4\right)-18\sqrt{x}}{-\left(x+9\right)}\)
\(=\frac{10\sqrt{x}}{x+9}\)