\(A=1+4+4^2+...+4^{90}\)
\(4A=4+4^2+4^3+...+4^{90}+4^{91}\)
\(4A-A=\left(4+4^2+4^3+...+4^{91}\right)-\left(1+4+4^2+...+4^{90}\right)\)
\(3A=4+4^2+4^3+...4^{91}-1-4-4^2-...-4^{90}\)
\(3A=4^{91}-1\)
\(A=\frac{4^{91}-1}{3}\)
t i c k nha ^^
4A= 4+42+43+....+491
4a-4=(4+42+43+...+491)-(1+4+42+...+490)
3a=491-1
a=(491-1)/3
A = 1 + 4 + 42 + ... + 490
4A = 4 + 42 + 43 + 44 + ... + 491
4A - A = 4 + 42 + 43 + ... + 491 - 1 - 4 - 42 - .. - 490
3A = 491 - 1 => A = \(\frac{4^{91}-1}{3}\)
A = 1 + 4 + 42 + ... + 490
4A = 4 + 42 + 43 + ... + 491
4A - A = (4 + 42 + 43 + ... + 491) - (1 + 4 + 42 + ... + 490)
3A = 491 - 1
A = \(\frac{4^{91}-1}{3}\)