a: \(=\dfrac{x^2+xy-x^2-y^2}{x+y}\cdot\dfrac{x-y+2y}{y\left(x-y\right)}\)
\(=\dfrac{y\left(x-y\right)}{x+y}\cdot\dfrac{x+y}{y\left(x-y\right)}=1\)
b: \(=\left(\dfrac{6x+1}{x\left(x-6\right)}+\dfrac{6x-1}{x\left(x+6\right)}\right)\cdot\dfrac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\dfrac{6x^2+37x+6+6x^2-37x+6}{x\left(x+6\right)\left(x-6\right)}\cdot\dfrac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\dfrac{12x^2+12}{x}\cdot\dfrac{1}{x^2+1}=\dfrac{12}{x}\)