\(A=\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\)
Đk: \(x\ne y\ne z\)
\(\Rightarrow A=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}\)
\(=x+y-z\)
\(A=\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\)
Đk: \(x\ne y\ne z\)
\(\Rightarrow A=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}\)
\(=x+y-z\)
Rút gọn các phân thức sau:
a) \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
b) \(\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(x+z\right)^2+\left(z-x\right)^2}\)
Rút gọn biểu thức
\(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)
\(\frac{\text{x^2+y^2+z^2}}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\) Rút gọn phân thức, biết rằng x+y+z=0
Rút gọn phân thức:
\(a,\dfrac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}\)
\(b,\dfrac{x^5+x+1}{x^3+x^2+x}\)
Rút gọn phân thức:
\(a,\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(b,\dfrac{\left(x^2-y\right)\left(y+1\right)+x^2y^2-1}{\left(x^2+y\right)\left(y+1\right)+x^2y^2+1}\)
Rút gọn biểu thức B= \(2\left(X^4+y^4+z^4\right)-\left(x^2+y^2+z^2\right)^2-2\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(x+y+z\right)^4\)
Rút gọn các biểu thức sau:
\(\left(x+y-z\right)^2+2\left(z-x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
rút gọn biểu thức
\(\frac{x^3+y^3+z^3-3xyz}{\left(x+y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2}\)
Rút gọn biểu thức
\(\left(x-y+z\right)^2\)\(+\left(z-y\right)^2\)\(+2\left(x-y+z\right)\left(y-z\right)\)