a) \(k=\frac{2^{11}.9^2}{3^5.16^2}=\frac{2^{11}.\left(3^2\right)^2}{3^5.\left(2^4\right)^2}=\frac{2^{11}.3^4}{3^5.2^8}=\frac{8.1}{3.1}=\frac{8}{3}\)
b) \(N=\frac{9^3.27^2}{6^2.3^{10}}=\frac{\left(3^2\right)^3.\left(3^3\right)^2}{\left(2.3\right)^2.3^{10}}=\frac{3^6.3^6}{2^2.3^2.3^{10}}=\frac{3^{12}}{4.3^{12}}=\frac{1}{4}\)
c)\(P=\frac{\left(3^3\right)^{25}.5^3.\left(2^3\right)^4}{\left(5^2\right)^2.\left(3^4\right)^{11}.2^{11}}=\frac{3^{75}.5^3.2^{12}}{5^4.3^{44}.2^{11}}=\frac{3^{31}.1.2}{5.1.1}=\frac{3^{31}.2}{5}=....\)