bạn có thể phân tích thành nhân tử rồi rút gọn
vd: như tử của cái bên trái ta tách đc thế này: 3a^2-3ab+ab-b^2 bằng 3a(a-b)+b(a-b) bằng (3a+b)(a-b) chẳng hạn là vậy
Chúc bạn giải thành công!:))
\(A=\frac{3a^2-2ab-b^2}{2a^2+ab-b^2}:\frac{3a^2-4ab+b^2}{3a^2+2ab-b^2}\)
\(=\frac{3a^2-2ab-b^2}{2a^2+ab-b^2}.\frac{3a^2+2ab-b^2}{3a^2-2ab-b^2}\)
\(=\frac{\left(3a^2-2ab-b^2\right)\left(3a^2+2ab-b^2\right)}{\left(2a^2+ab-b^2\right)\left(3a^2-2ab-b^2\right)}\)
\(=\frac{9a^4+6a^3b-3a^2b^2-6a^3b-4a^2b^2+2ab^3-3a^2b^2-2ab^3+b^4}{6a^4-4a^3b-2a^2b^2+3a^3b-2a^2b^2-ab^3-3a^2b^2+2ab^3+b^4}\)
\(=\frac{9a^4-10a^2b^2+b^4}{6a^4-a^3b-7a^2b^2+ab^3+b^4}\)
\(=\frac{9a^4-9a^2b^2-a^2b^2+b^4}{6a^4-6a^2b^2-a^2b^2+b^4-a^3b+ab^3}\)
\(=\frac{9a^2\left(a^2-b^2\right)-b^2\left(a^2-b^2\right)}{6a^2\left(a^2-b^2\right)-b^2\left(a^2-b^2\right)-ab\left(a^2-b^2\right)}\)
\(=\frac{\left(a^2-b^2\right)\left(9a^2-b^2\right)}{\left(a^2-b^2\right)\left(6a^2-b^2-ab\right)}\)
\(=\frac{9a^2-b^2}{6a^2-b^2-ab}\)
\(=\frac{\left(3a-b\right)\left(3a+b\right)}{6a^2-3ab+2ab-b^2}\)
\(=\frac{\left(3a-b\right)\left(3a+b\right)}{3a\left(a-b\right)+2b\left(a-b\right)}\)
\(=\frac{\left(3a-b\right)\left(3a+b\right)}{\left(a-b\right)\left(3a+2b\right)}\)