A=\(\left(\frac{3}{2}-\frac{2}{5}+\frac{1}{10}\right).\left(\frac{2}{3}-\frac{3}{2}+12\right)\)
A=\(\frac{6}{5}\).\(\frac{67}{6}\)=\(\frac{67}{5}\)
Hok tốt
A=\(\left(\frac{3}{2}-\frac{2}{5}+\frac{1}{10}\right).\left(\frac{2}{3}-\frac{3}{2}+12\right)\)
A=\(\frac{6}{5}\).\(\frac{67}{6}\)=\(\frac{67}{5}\)
Hok tốt
rút gọn A=\(\frac{\left(\frac{3}{2}-\frac{2}{5}+\frac{1}{10}\right)}{\left(\frac{3}{2}-\frac{2}{3}+\frac{1}{12}\right)}\)
(1) Rút gọn: A= \(\left(\frac{3}{2}-\frac{2}{5}+\frac{1}{10}\right):\left(\frac{3}{2}-\frac{2}{3}+\frac{1}{12}\right)\)
(2) Tìm x biết 2x+2.3x+1.5x =10800
Rút gọn biểu thức A= \(\frac{\left(\frac{2}{3}\right)^3\cdot\left(-\frac{3}{4}\right)^2\cdot\left(-1\right)^{2017}}{\left(\frac{2}{5}\right)^2\cdot\left(-\frac{5}{12}\right)^3}-\frac{71}{5}\)
Câu 1: Rút gọn: \(A=\left(\frac{3}{2}-\frac{2}{5}+\frac{1}{10}\right):\left(\frac{3}{2}-\frac{2}{3}+\frac{1}{12}\right)\)
Câu 2: Cho \(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)và \(P=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\). Tính \(\left(S-P\right)^{2013}\)
Rút gọn biểu thức
a)\(\frac{\left(\frac{2}{3}\right)^3.\left(-\frac{3}{4}\right)^2.\left(-1\right)^5}{\left(\frac{2}{5}\right)^2.\left(-\frac{5}{12}\right)^2}\)
b)\(6^6+6^3.3^3+3^6\)/-73
Rút gọn các biểu thức sau:
1) A=\(\frac{4^59^4-2.6^9}{2^{10}3^8+6^8.20}\)
2) B=\((\frac{3}{5})^2.5^2-(2\frac{1}{4})^3:\left(\frac{3}{4}\right)^3+\frac{1}{2}\)
Rút gọn: a)\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}.12^{10}}\)
b)\(\frac{\left(-\frac{1}{2}\right)^3-\left(\frac{3}{4}\right)^3.\left(-2\right)^2}{2.\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}}\)
Tìm x
a)\(3^{x+1}=9^x\)
b)\(2^{3x+2}=4^{x+5}\)
c)\(3^{2x-1}=243\)
Rút gọn các biểu thức sau :
A=\(\frac{2.8^4.27^2+4.6^9}{2^7.6^7+2^7.40.9^4}\)
B=\(\frac{\left(\frac{2}{3}\right)^3.\left(-\frac{3}{4}\right)^2.\left(-1\right)^5}{\left(\frac{2}{5}\right)^2.\left(-\frac{5}{12}\right)^3}\)