\(A=\dfrac{17^{100}+17^{96}+17^{92}+....+17^4+1}{17^{102}+17^{100}+17^{98}+....+17^2+1}\)
Gọi \(17^{100}+17^{96}+17^{92}+....+17^4+1\) là B
\(B=17^{100}+17^{96}+17^{92}+....+17^4+1\\ 17^4\cdot B=17^{104}+17^{100}+17^{96}+......+17^8+17^4\\ 17^4\cdot B-B=\left(17^{104}+17^{100}+17^{96}+......+17^8+17^4\right)-\left(17^{100}+17^{96}+17^{92}+....+17^4+1\right)\\ B\cdot\left(17^4-1\right)=17^{104}-1\\ B=\dfrac{17^{104}-1}{17^4-1}\)
Gọi \(17^{102}+17^{100}+17^{98}+....+17^2+1\) là C
\(C=17^{102}+17^{100}+17^{98}+....+17^2+1\\ C\cdot17^2=17^{104}+17^{102}+17^{100}+17^{98}+....+17^2\\ C\cdot17^2-C=\left(17^{104}+17^{102}+17^{100}+17^{98}+....+17^2\right)-\left(17^{102}+17^{100}+17^{98}+....+17^2+1\right)\\ C\cdot\left(17^2-1\right)=17^{104}-1\\ C=\dfrac{17^{104}-1}{17^2-1}\)
=>
\(A=B:C\\ A=\dfrac{17^{104}-1}{17^4-1}:\dfrac{17^{104}-1}{17^2-1}\\ A=\dfrac{17^2-1}{17^4-1}\)
A = \(\dfrac{T}{M}\)
M = T + (\(17^{102}+17^{98}+17^{94}+...+17^2\))
M = T + \(17^2\left(17^{100}+17^{96}+17^{92}+...+17^0\right)\)
M = T + \(17^2\cdot\) T = T(\(1+17^2\))
=> A = \(\dfrac{T}{T\left(1+17^2\right)}=\dfrac{1}{1+17^2}\)