b: Xét ΔCIA vuông tại I và ΔCIB vuông tại I có
CI chung
IA=IB
Do đó: ΔCIA=ΔCIB
Suy ra: \(\widehat{ACI}=\widehat{BCI}\)
hay CI là tia phân giác của góc ACB
b: Xét ΔCIA vuông tại I và ΔCIB vuông tại I có
CI chung
IA=IB
Do đó: ΔCIA=ΔCIB
Suy ra: \(\widehat{ACI}=\widehat{BCI}\)
hay CI là tia phân giác của góc ACB
Qua trung điểm I của đoạn thẳng AB, kẻ đường vuông góc với AB, trên đường vuông góc đó lấy 2 điểm C và D. Nối CA, CB, DA, DB. Tìm các cặp tam giác bằng nhau trong hình vẽ và chưng minh nó
Qua trung điểm I của đoạn thẳng AB, kẻ đường vuông góc với AB, trên đường vuông góc đó lấy hai điểm C và D. nối CA, CB, DA, DB. Tìm các cặp tam giác bằng nhau trong hình vẽ.
Qua trung điểm I của đoạn thẳng AB, kẻ đường vuông góc với AB, trên đường vuông góc đó lấy 2 điểm C và D. Nối CA, CB, DA, DB. TÌm các cặp tam giác bằng nhau trong hình vẽ
Qua trung điểm I của đoạn thẳng AB, vẽ đừong thẳng vuông góc vgới AB, trên đường thẳng vuông góc đó lấy điểm C
a) Chứng minh CA = CB
b) Chứng minh CI là tia phân giác của góc ACB
Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.
Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc tương ứng. c) Gọi O là trung điểm HK. So sánh hai tam giác AOH và BOK.
Bài 3: Cho ABC, trên tia đối của tia AB, xác định điểm D sao cho AD = AB. Trên tia đối của tia AC xác định điểm E sao cho AE = AC. Chứng minh rằng: a) BC // ED b) DBC = BDE
Bài 4: Cho hai đoạn AB và CD cắt nhau tại trung điểm O của mỗi đường. Chứng minh BC // AD.
Bài 5: Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC ở D. Chứng minh: a) DB = DC b) AD BC
Bài 6: Cho tam giác ABC có AB = AC, M là trung điểm của BC, trên tia AM lấy D sao cho AM = MD. Chứng minh: a) ABM = DCM. b) AB // DC. c) AM BC
Bài 7: Qua trung điểm M của đoạn AB vẽ đường thẳng d vuông góc với AB. Trên đường thẳng d lấy điểm K. Chứng minh KM là tia phân giác của góc AKB.
Bài 8: Cho góc xOy có Ot là tia phân giác. Trên hai tia Ox, Oy lần lượt lấy các điểm M, N sao cho OM = ON. Trên tia Ot lấy P bất kì. Chứng minh a) PM = PN. b) Khoảng cách từ P đến hai cạnh của góc xOy bằng nhau.
Bài 9: Cho tam giác ABC có góc A bằng 90 0 . Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB. a) Chứng minh: AB = DE b) Tính số đo góc EDC?
Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng BC không chứa điểm A vẽ tia Cx song song với AB. Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh: a) MA = MD b) BA điểm A, M, D thẳng hàng.
11: Cho tam giác ABC, M, N là trung điểm của AB và AC. Trên tia đối của tia NM xác định điểm P sao cho NP = MN. Chứng minh: a) CP//AB b) MB = CP c) BC = 2MN
Cho M là trung điểm của đoạn thẳng AB qua điểm M vẽ đường thẳng D vuông góc AB . Trên đường thẳng d lấy C . Kẻ C với A , C vs B . Chứng minh A tam giác AMC= tam giác BMC B CA = CB và góc CAM= góc CBM
Cho đoạn thẳng AB. Gọi I là trung điểm của đoạn thẳng AB. Qua I, kẻ đường thẳng d vuông góc với AB. Lấy C,D là hai điểm bất kì trên đường thẳng d. Chứng minh rằng:
A: tam giác ACI = tam giác BCI; tam giác ADI = tam giác BDI
B: tam giác ACB = tam giác BCD
C: CD là tia phân giác của góc ACB
CHO ΔABCCÂN ( AB = AC, GÓC A TÙ ). TRÊN CẠNH BC LẤY ĐIỂM D (BD<BC/2), TRÊN TIA ĐỐI CỦA TIA CB LẤY ĐIỂM E SAO CHO BD = CE. TRÊN TIA ĐỐI CỦA TIA CA LẤY ĐIỂM I SAO CHO CI = CA. GọiO là trung điểm của DE
a) chứng minh rằng : ΔABD=ΔICE
b)chứng minh rằng : AB+AC<AD+AE
c)TỪ D VÀ E KẺ CÁC ĐƯỜNG THẲNG CÙNG VUÔNG GÓC VỚI BC CẮT AB VÀ AI THEO THỨ TỰ TẠI M, N . Trên đoạn AO lấy điểm G sao cho AG=2/3AO. Chứng minh rằng đường thẳng NG đi qua trung điểm của AG
d) CHỨNG MINH RẰNG: CHU VI TAM GIÁC ABC NHỎ HƠN CHU VI TAM GIÁC AMN
Cho tam giác vuông tại A (AB>AC) . Kẻ AH vuông góc ( H thuộc BC).Lấy điểm D thuộc tia đối của tia HA sao cho HD=HA a) Chứng minh rằng tam giác CAH= tam giác CDH và tia CB là tia phân giác của ACD b) Qua D kẻ một đường thẳng song song với AC cắt BC ở M. Chứng minh rằng tam giác CAH= tam giác MDH và AD là đường trung trực của đoạn CM c) Kẻ BN vuông góc với đường thẳng AM ( N thuộc tia AM ) . Chứng minh rằng ba điểm B , N , D thẳng hàng.