Qua điểm O trong tam giác ABC vẽ 1 đường thẳng song song với BC cắt AB,AC lần lượt tại D và E.Đường thẳng song song với CA cắt BC,BA lần lượt tại F và H .Đường thẳng song song với AB cắt CA,CB lần lượt tại I và K .CMR
a,\(\frac{OD}{OE}.\frac{OF}{OH}.\frac{OI}{OK}=1\)
b,\(\frac{AH}{AB}+\frac{BK}{BC}+\frac{CE}{CA}=1\)
1) Cho tam giác ABC có phân giác AD và trung tuyến BE cắt nhau tại O. Đường thẳng qua O và song song với AC cắt AB và BA lần lượt tại M và N. Tình độ dài các cạnh AB và BC, biết rằng AM=12cm, AC=40cm, CN=14cm
2)cho tam giác ABC cân tại A có CD đường cao. Trên các cạnh CB và CA lấy các điểm E và F sao cho DC=CE=CF. Đường thẳng qua E song song với AB cắt CD tại K và AC tại N, đường thẳng qua F và song song với AB cắt BC tại M. Tính độ dài các cạnh tam giác ABC, biết rằng EM=9cm, FN=12cm, IK=6cm
3)Cho hình thang cân ABCD(AB//CD). Đường cao AH cắt đường chéo BD tại K. AD và BC cắt nhau tại M. Tính độ dài AM, biết rằng AD=20cm, DK/KB=2/3.
cho tam giác ABC, d là đường thẳng đi qua B, E thuộc AC. Qua E vẽ các đường thẳng song song với AB và BC cắt d tại M,N. D là giao điểm của ME và BC. Đường thẳng NE cắt AB và MC tại F và K. CMR tam giác AFN đồng dạng với tam giác MDC
qua diểm O nằm trong tam giác ABC vè đường thẳng song song với BC cắt AB,AC lần lượt tại D,E , đường thẳng song song với CA cắt BC,BA tại F,H , đường thẳng song song với AB cắt AC,BC tại I,K
a, CMR \(\frac{OD}{0E}\)\(\times\)\(\frac{OF}{OH}\)\(\times\)\(\frac{OI}{OK}\)=1
b \(\frac{AH}{AB}\)+\(\frac{BK}{BC}\)+\(\frac{CE}{CA}\)= 1
Cho tam giác ABC và O thuộc miền trong của tam giác. Đường thẳng qua O song song với AB cắt BC, AC tại D và G. Đường thẳng qua O song song với AC cắt BC, AB tại E và H. Đường thẳng qua O song song với BC cắt BA, AC tại K và F. Tính diện tích BKOD theo diện tích tam giác HOK và diện tích tam giác ODE.
Tam giác ABC. D thuộc BC. Qua D vẽ các đường thẳng song song với AB, AC và cắt các đoạn AC, AB lần lượt tại E và F. CMR: AE/AB + AF/AC = 1
cho tam giác abc. o nằm trong tam giác. qua o kẻ đường thẳng song song với bc cắt ab, ac ở m, n, đường thẳng song song với ca cắt ba, bc ở f, k, đường thẳng song song với ab cắt ca, cb ở d,e. chứng minh af/ab + be/bc + cn/ca = 1
Cho tam giác ABC. Một đường thẳng song song với BC cắt các cạnh AB, AC tại D và E. Qua C kẻ đường thẳng song song với AB cắt DE tại F. Gọi H là giao điểm của AC với BF. Đường thẳng qua H song song với AB cắt BC tại I. Chứng minh rằng:
a. DA/DB = ED/FE
b. HA.HE = HC2
Cho tam giác ABC đều, M là điểm nằm trong tam giác đó. Qua M kẻ đường thẳng song song với AC và cắt BC ở D , kẻ đường thẳng song song với AB cắt AC tại E , kẻ đường thẳng song song với BC và cắt AB ở F . CM
A) Từ giác BFMD, CDME, AEMF là các hình thang cân .
B) tính số đo DME, EMF, DMF