Từ điểm A ở bên ngoài đường tròn (O), kẻ 2 tiếp tuyến AB, AC đến đường tròn (O) (B, C là 2 tiếp điểm). Kẻ cát tuyến ADE với đường tròn (O) (D nằm giữa A và E).
b) Chứng minh OA vuông góc với BC tại H và OD^2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng với tam giác ODA
c) C/m tam giác ABD đồng dạng với tam giác AEB
Từ điểm A ở bên ngoài đường tròn (O), kẻ 2 tiếp tuyến AB, AC đến đường tròn (O) (B, C là 2 tiếp điểm). Kẻ cát tuyến ADE với đường tròn (O) (D nằm giữa A và E).
b) Chứng minh OA vuông góc với BC tại H và OD^2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng với tam giác ODA
c) C/m tam giác ABD đồng dạng với tam giác AEB
Qua A nằm ngoài (O) kẻ 2 cát tuyến ABC,ADE tới (O) (B nằm giữa A và C; D nằm giữa A và E ). Kẻ dây BF//DE C/m
a) \(\widehat{DBF}=\widehat{DBC}\)
b)\(\Delta ACE=\Delta DCF\)
1.cho tam giác nhọn ABC kẻ các đường cao AD, BE, CF, gọi H là trực tâm. Nối EF, ED, FD. chứng minh DA là phân giác góc EDF.
2. Từ một điểm A ở ngoài đường tròn O, vẽ hai cát tuyến của O là ABC và ADE ( B nằm giữa A và C; D nằm giữa A và E). cho biết góc A=42, sđ BD= 48
a) tính số đo cung nhỏ CE
b) chứng minh CD vuông góc BE
Từ điểm A ở ngoài đường tròn O kẻ tiếp tuyến AB (B là tiếp điểm) và 2 cát tuyến ACD, AEF với đường tròn O (EF là đường kính của đường tròn tâm O , AF nằm giữa AB và AD).
1,Cm tam giác ADB đồng dạng với tam giác ABC
2, Kẻ BH vuông góc với OE tại H. Cm BE là tia phân giác của góc ABH
3,Cm góc ACE= góc AEF
Từ A nằm ngoài đường tròn tâm ( O) . Kẻ hai tiếp tuyến AB , AC đến đường tròn ( B , C là tiếp điểm ) . Kẻ cát tuyến ADE với ( O) ( D nằm giữa A và E ) CMR :
a ) 4 điểm A ; B ; O ;C cùng thuộc một đường tròn .
b) OA v góc với BC tại H
c) tam giác OHD đồng dạng ODA
d) BC trùng với tia phân giác DHE e) Từ D kẻ đt // BE . Đt này cắt AB ; BC lần lượt tại M và N . CMinh : D là trung điểm MN
Từ A nằm ngoài đường tròn tâm ( O) . Kẻ hai tiếp tuyến AB , AC đến đường tròn ( B , C là tiếp điểm ) . Kẻ cát tuyến ADE với ( O) ( D nằm giữa A và E ) CMR :
a ) 4 điểm A ; B ; O ;C cùng thuộc một đường tròn .
b) OA v góc với BC tại H
c) tam giác OHD đồng dạng ODA
d) BC trùng với tia phân giác DHE e) Từ D kẻ đt // BE . Đt này cắt AB ; BC lần lượt tại M và N . CMinh : D là trung điểm MN
cho (O,R) có điểm A nằm ngoài (O). Từ A kẻ cát tuyến ABC và ADE. Có B nằm giữa A, C và D nằm giữa A, E Câu 1: Chứng minh góc DBC + góc DEC = 180 độ. Góc BCE + BDE = 180 độ
* gợi ý: sử dụng lí thuyết số đo góc nội tiếp và số đo cung tròn của 1 đường tròn
Câu 4 (3 điểm)
1. Cho (O; R) cố định và điểm A thay đổi nằm ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với (O) (với B, C là các tiếp điểm). Vẽ cát tuyến ADE với (O) (D nằm giữa A và E ; DE không đi qua O). Gọi H là giao điểm của AO và BC.
a. Chứng minh rằng tứ giác ABOC nội tiếp đường tròn.
b. Chứng minh rằng AH.AO = AD.AE và tứ giác DEOH là tứ giác nội tiếp.
c. Qua O vẽ đường thẳng vuông góc với AO cắt các tia AB, AC lần lượt tại M, N. Tìm vị trí của điểm A ở ngoài (O) để diện tích tam giác AMN đạt giá trị nhỏ nhất.
2. Một tam giác vuông có độ dài hai cạnh góc vuông là 2cm và 3cm. Quay tam giác vuông đó quanh cạnh góc vuông bé ta đtợc hình nón. Tính diện tích xunh quanh của hình nón đó.
Từ A nằm ngoài đường tròn tâm ( O) . Kẻ hai tiếp tuyến AB , AC đến đường tròn ( B , C là tiếp điểm ) . Kẻ cát tuyến ADE với ( O) ( D nằm giữa A và E ) CMR :
a ) 4 điểm A ; B ; O ;C cùng thuộc một đường tròn .
b) OA v góc với BC tại H
c) tam giác OHD đồng dạng ODA
d) BC trùng với tia phân giác DHE
e) Từ D kẻ đt // BE . Đt này cắt AB ; BC lần lượt tại M và N . CM : D là trung điểm MN