\(=\left(\dfrac{1-x\sqrt{x}+\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right).\dfrac{\left(1-\sqrt{x}\right)^2}{\left(1-x\right)^2}\) \(\left(đk:x>0,x\ne1\right)\)
\(=\left(\dfrac{1-x\sqrt{x}+\sqrt{x}-x}{1-\sqrt{x}}\right).\dfrac{\left(1-\sqrt{x}\right)^2}{\left(1-x\right)^2}\)
\(=\left(1-x\sqrt{x}+\sqrt{x}-x\right)\dfrac{1-\sqrt{x}}{\left(1-x\right)^2}\)
\(=\dfrac{\left(1-x\sqrt{x}+\sqrt{x}-x\right)\left(1-\sqrt{x}\right)}{\left(1-x\right)^2}\)
\(=\dfrac{1-x\sqrt{x}+\sqrt{x}-x-\sqrt{x}+x^2-x+x\sqrt{x}}{\left(1-x\right)^2}\)
\(=\dfrac{1-2x+x^2}{\left(1-x\right)^2}\)
\(=\dfrac{\left(1-x\right)^2}{\left(1-x\right)^2}\)
\(=1\)
Vậy \(Q=1\)