cho x^4+y^4+1=xy(1-2xy)+4.tìm gtln-nn của ; xy
Cho B=\(\left(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\frac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\frac{x+y+2xy}{1-xy}\right)\)
a) Rút gọn B
b) Tính B tại x=\(\frac{2}{2+\sqrt{3}}\)
c) Tìm GTLN của B
1.Cho x,y > 0 và x^2 + y^2 = 1
Tìm GTNN của \(A=\frac{-2xy}{1+xy}\)
2.cho các số dương x, y,z thỏa man x+y+z=4. Chứng minh \(\frac{1}{xy}+\frac{1}{xz}>=1\)
3.3)cho các số x, y không âm thỏa mãn x+y=1 . tìm gtnn ,gtln của A =x^2+y^2
Cho x,y thỏa 2(x2 +y2) = xy+1
Tìm GTLN của p= \(\frac{x^4+y^4}{2xy+1}\)
Cho x,y là các số thực thỏa mãn: \(x^2+2y^2-2xy=1\)
tìm GTLN, GTNN của biểu thức: \(P=\frac{1+xy-y^2}{1+3xy-y^2}\)
Rút gọn\(A=\left(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\frac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\frac{x+y+2xy}{1-xy}\right)\)
Cho \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6\) Tìm GTLN của \(A=\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+\sqrt{1}}{1+\sqrt{xy}}\right)\)
Giải các hệ phương trình: x + y x - 1 = x - y x + 1 + 2 x y y - x y + 1 = y + x y - 2 - 2 x y
2xy²⁺x+y+1=x² +2y²+xy
Tìm các số nguyên x,y
Cho x,y,z>0; \(x^2+y^2+z^2+4xyz=2\left(xy+yz+zx\right)\).Tìm GTLN của P=x(1-y)(1-z)