\(P=x^2y\left(xy^2-x^2\cdot\dfrac{1}{2}y^3\right)\) (sửa đề)
\(=x^2y\left(xy^2\right)-x^2y\left(x^2\cdot\dfrac{1}{2}y^3\right)\)
\(=x^3y^3-\dfrac{1}{2}x^4y^4\)
#Toru
\(P=x^2y\left(xy^2-x^2\cdot\dfrac{1}{2}y^3\right)\) (sửa đề)
\(=x^2y\left(xy^2\right)-x^2y\left(x^2\cdot\dfrac{1}{2}y^3\right)\)
\(=x^3y^3-\dfrac{1}{2}x^4y^4\)
#Toru
g)(x+3y)(x-3y+2) h)(x+2y((x-2y+3) I)(x^2-xy+y^2)(x+y) J)(x^2-xy+y^2)(x+y) K)(5x-2y)(x^2-xy-1) L)(x^2y^2-xy+y)(x-y)
tính giá trị biểu thức
a) A=x^2-y+xy^2 với x=-5,y=2
b) B=3x^3-2y^3-6x^2y^2+xy với x=2/3 , y=1/2
c) C= 2x+xy^2-x^y-2y với x=-1/2, y=-1/3
Bài 1: Tính giá trị biểu thức sau: a) B=3x^3-2y^3-6x^2y^2+xy tại x=2/3, y=1/2 b) C=2x+xy^2-x^2y-2y tại x=-1/2, y=-1/3
tính giá trị của biểu thức sau
a,A=3x^3-2y^3-6x^2y^2+xy. với x=2/3;y=1/2
b,B= 2x+xy^2-x^2y-2y .với x=-1/2;y=-1/3
Bài 1: Chứng minh mọi số nguyên x,y thì:
`a)B=x^3y^2-3x^2y+2y` chia hết `(xy -1)`
`b)C=xy(x^3 +2)-y(xy^3+2x)` chia hết `(x^2 + xy + y^2)`
Giups mik giải bài này nhanh nha
\(\frac{\left(x-y\right)^2+xy}{\left(x+y\right)^2-xy}\)\(\left[1\frac{x^5+y^5+x^3y^2+x^2y^3}{\left(x^3-y^3\right)\left(x^3+y^3+x^2y+xy^2\right)}\right]\)
phân tích thành nhân tử
x^3+2x^2+x-xy
x^3-y^3+2x^2-2y^2
x^3+y^3+x^2y+y^2x+2^2x+2^2y
1.Tính \(\dfrac{x}{x+2}-\dfrac{x}{x-2}\)
2.Phân tích đa thức thành nhân tử
1)\(\left(x^2y^2-8\right)-1\)
2)\(x^3y-2x^2y+xy-xy^3\)
3)\(x^3-2x^2y+xy^2\)
4)\(x^2+2x-y^2+1\)
5)\(x^2+2x-4y^2+1\)
6)\(x^2-6x-y^2+9\)