a: \(3x^2+6xy+3y^2-3z^2\)
\(=3\left(x^2+2xy+y^2-z^2\right)\)
\(=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)
b: \(xy+yz-5\left(x+y\right)\)
=z(x+y)-5(x+y)
=(x+y)(z-5)
c: \(3x^2-5x-3xy+5y\)
\(=x\left(3x-5\right)-y\left(3x-5\right)\)
=(3x-5)(x-y)
d: \(x^2+4x-\dfrac{1}{25}y^2+4\)
\(=\left(x^2+4x+4\right)-\left(\dfrac{1}{5}y\right)^2\)
\(=\left(x+2\right)^2-\left(\dfrac{1}{5}y\right)^2\)
\(=\left(x+2+\dfrac{1}{5}y\right)\left(x+2-\dfrac{1}{5}y\right)\)