ĐKXĐ: \(x\ge1\)
- Với \(1\le x\le2\Rightarrow VT< 0\) pt vô nghiệm
- Với \(x>2\)
\(x^2-8x+8+10x-20-20\sqrt{x-1}=0\)
\(\Leftrightarrow x^2-8x+8+10\left[\frac{\left(x-2\right)^2-4\left(x-1\right)}{x-2+4\sqrt{x-1}}\right]=0\)
\(\Leftrightarrow x^2-8x+8+\frac{10\left(x^2-8x+8\right)}{x-2+4\sqrt{x-1}}=0\)
\(\Leftrightarrow\left(x^2-8x+8\right)\left(1+\frac{10}{x-2+4\sqrt{x-1}}\right)=0\)
\(\Leftrightarrow x^2-8x+8=0\Rightarrow\left[{}\begin{matrix}x=4+2\sqrt{2}\\x=4-2\sqrt{2}< 2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=2\end{matrix}\right.\)