Bài 1:Phân tích đa thức sau thành nhân tử
a)8x^3(y+z)-y^3(z+zx)-z^3(2x-y)
b)a(b^+c^2)+b(c^2+a^2)+c(a^2+b^2)-2ab-a^3-b^3-c^3
d)x^3+y^3+z^3-3xyz
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
Pt đa thức thành nhân tử:
1)xy(x-y) + yz(y-z) + zx(z-x)
2)ab(a+b)-bc(b+c) + ac(a-c)
3)a^3(b^2-c^2) + b^3(c^2-a^2) + c^3(a^2-b^2)
4)(x+y+z)^3-x^3-y^3-z^3
5)a^3+b^3+c^3-3abc
cm nếu (x+y+z)=x^2+y^2+z^2 thì xy +yz+zx=0
nếu (x^2+y^2+z^2).(a^2+b^2+c^2)=(ã+by+cx)^2 thì a/x=b/y=c/z
Bài 1. Viết các đa thức dưới đây thành tích
a,y^4-14y^2+49
b,1/4-x^2
c,x^4-16
d,x^2-9
Bài 2. Rút gọn rồi thay x,y
a, 4x^2-2x+1/4. (x=3,x=19)
b,25a^2+10/3a+1/9. (a=9,a=2009)
c,4x^2+y^2-4x. (2x-y=4)
Giúp mk với ạ !
a) Cho \(x^2+y^2+z^2=xy+yz+zx\). CMR : x=y=z
b) cho \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+4\left(ab+ac+bc\right)=4\left(a^2+b^2+c^2\right)\). CMR : a=b=c
Cho các phân thức: A=\(\frac{4xy-z}{xy+2z^2}\);B=\(\frac{4yz-x^2}{yz+2x^2}\);C=\(\frac{4zx-y^2}{zx+2y}\)
C/m với x khác y;y khác z; z khác x và x+y+z=0 thì A.B.C=1, A+B+C=3
Phân tích đa thức thành nhân tử
a) x^4 - y^4
b) x^2 + 11x + 24
c) xy( x - y ) + y^2( y - z ) + zx( z - x )
Phân tích đa thức thành nhân tử :
1) \(A=\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)
2)\(B=2\left(x^4+y^4+z^4\right)-\left(x^2+y^2+z^2\right)-2\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(x+y+z\right)^4\)
3)\(\left(a+b+c\right)^3-4\left(a^3+b^3+c^3\right)-12abc\)