phan tich da thuc thanh nhan tu
\(\left(\text{a}+b+c\right)^3-\text{a}^3-b^3-c^3\)
phan tich da thuc thanh nhan tu
ab(a-b)+bc(b-c) +ca(c-a)
\(x^4-3x^3y+3x^2y^2-z^3-xy^3\)
\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)
Phan tich da thuc thanh nhan tu
A=\(\left(a+b+c\right)^2+\left(a+b-c\right)^2-4c^2\)
phan tích da thuc thanh nhan tu
\(\text{a}b\left(\text{a}-b\right)+bc\left(b-c\right)+c\text{a}\left(c-\text{a}\right)\)
phan tich da thuc thanh nhan tu
\(\left(x-y\right)^3-1-3\left(x-y\right)\left(x-y-1\right)\)
PT thanh nhan tu: \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
phan tích nhan tử thanh nhan tử:
a)\(3x^2-12y^2\)
b)\(5xy^2-10xyt+5xt^2\)
c)\(x^3+3x^2+3x+1-27x^3\)
d)\(\text{a}^3x-\text{a}b+b-x\)
e)\(3x^2\left(\text{a}+b+c\right)+36xy\left(\text{a}+b+c\right)+108y^2\left(\text{a}+b+c\right)\)
f)\(\text{a}b\left(\text{a}-b\right)+bc\left(b-c\right)+c\text{a}\left(c-\text{a}\right)\)
g)\(\left(\text{a}+b+c\right)^3-\text{a}^3-b^3-c^3\)
h)\(4\text{a}^2b^2-\left(\text{a}^2+b^2-c^2\right)^2\)
\(\left(2x-10\right).\left(x+10\right).\left(x+\sqrt{3}\right)=0\)
(Bai phan tich da thuc thanh nhan tu)
Rut gon phan thuc
\(M=\frac{\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3}{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}\)
Pha tich da thuc thanh nhan tu
\(a,6x^4-11x^2+3\)
\(b,\left(x^2+3x+1\right)\left(x^2+3x-3\right)-5\)