a, \(a^3+b^3+c^3-3abc\)
= \(\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc\)
= \([\left(a+b\right)^3+c^3]-(3a^2b+3ab^2+3abc)\)
= \(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
= \(\left(a+b+c\right)\left[a^2+2ab+b^2-ca-cb+c^2\right]-3ab\left(a+b+c\right)\)
= \(\left(a+b+c\right)\left[a^2+2ab+b^2-ca-cb+c^2-3ab\right]\)
= \(\left(a+b+c\right)\left[a^2+b^2+c^2-ca-cb-ab\right]\)
= \(\left(a+b+c\right)\left[a^2+b^2+c^2-ab-bc-ca\right]\)
b,