\(x^5+x^4+x^3+x^2+x+1\)
\(=\left(x^5+x^4+x^3\right)+\left(x^2+x+1\right)\)
\(=x^3\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^3+1\right)\left(x^2+x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)
Ta có: \(x^5+x^4+x^3+x^2+x+1\)
\(=x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^4+x^2+1\right)\)
\(=\left(x+1\right)\left(x^4+2x^2+1-x^2\right)\)
\(=\left(x+1\right)\left\lbrack\left(x^2+1\right)^2-x^2\right\rbrack=\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)