\(x^2-xy+x-y\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x-1\right)\left(x-y\right)\)
a, \(x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right).\)
\(b,3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
a/ x^2 -xy +x-y = x(x-y)+(x-y) = (x-1)(x+y)
b/ 3x^2 - 3xy -5x +5y = 3x(x-y) - 5(x-y) = (3x-5)(x-y)