Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Mạnh Hiếu

Phân tích đa thức thành nhân tử x^4-2y^4-x^2y^2+x^2+y^2

Phạm Thành Đông
28 tháng 3 2021 lúc 23:18

Đặt \(A=x^4-2y^4-x^2y^2+x^2+y^2\)

\(\Rightarrow2A=2x^4-4y^4-2x^2y^2+2x^2+2y^2\)

\(\Rightarrow2A=\left(x^4+2x^2+1\right)-\left(y^4-2y^2+1\right)\)\(+\left(x^4-2x^2y^2+y^4\right)-4y^4\)

\(\Rightarrow2A=\left(x^2+1\right)^2-\left(y^2-1\right)^2+\left(x^2-y^2\right)^2-4y^4\)

\(\Rightarrow2A=\left[\left(x^2+1\right)^2-4y^4\right]+\left[\left(x^2-y^2\right)^2-\left(y^2-1\right)^2\right]\)

\(\Rightarrow2A=\left(x^2+1-2y^2\right)\left(x^2+1+2y^2\right)+\)\(\left(x^2-y^2+y^2-1\right)\left(x^2-y^2-y^2+1\right)\)

\(\Rightarrow2A=\left(x^2+1-2y^2\right)\left(x^2+1+2y^2\right)+\)\(\left(x^2-1\right)\left(x^2+1-2y^2\right)\)

\(\Rightarrow2A=\left(x^2+1-2y^2\right)\left(x^2+1+2y^2+x^2-1\right)\)

\(\Rightarrow2A=\left(x^2-2y^2+1\right)\left(2x^2+2y^2\right)\)

\(\Rightarrow2A=2\left(x^2-2y^2+1\right)\left(x^2+y^2\right)\)

\(\Rightarrow A=\left(x^2-y^2+1\right)\left(x^2+y^2\right)\)

Khách vãng lai đã xóa
Phạm Thành Đông
28 tháng 3 2021 lúc 23:20

Nhầm, tớ chốt lại: \(A=\left(x^2-2y^2+1\right)\left(x^2+y^2\right)\), đừng xem cái câu cuối ở tin 1, sai đấy.

Khách vãng lai đã xóa

Các câu hỏi tương tự
Tiến Đạt
Xem chi tiết
T.Huy
Xem chi tiết
Trần Tuấn Khải
Xem chi tiết
Trần Hoàng Trung Đức
Xem chi tiết
Lê Thảo Vy
Xem chi tiết
cao phi long
Xem chi tiết
Lê Thủy Vân
Xem chi tiết
thdang
Xem chi tiết
Xem chi tiết