\(x^3+9x^2+26x+24=\left(x^2+7x+12\right)\left(x+2\right)=\left(x+3\right)\left(x+4\right)\left(x+2\right)\)
Ta có: \(x^3+9x^2+26x+24\)
\(=\left(x^3+2x^2\right)+\left(7x^2+14x\right)+\left(12x+24\right)\)
\(=x^2\left(x+2\right)+7x\left(x+2\right)+12\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+7x+12\right)\)
\(=\left(x+2\right)\left[\left(x^2+3x\right)+\left(4x+12\right)\right]\)
\(=\left(x+2\right)\left[x\left(x+3\right)+4\left(x+3\right)\right]\)
\(=\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
x3 + 9x2 + 26x + 24
= x3 + 2x2 + 7x + 12x + 14x + 24
= ( x3 + 7x2 + 12x ) + ( 2x2 + 14x + 24 )
= x( x2 + 7x + 12 ) + 2( x2 + 7x + 12 )
= ( x2 + 7x + 12 )( x + 2 )
= ( x2 + 3x + 4x + 12 )( x + 2 )
= [ x( x + 3 ) + 4( x + 3 ) ]( x + 2 )
= ( x + 2 )( x + 3 )( x + 4 )