\(a^3+b^3+c^3-3ab\)
\(=a^3+ab\left(a+b\right)+b^3-3ab\left(a+b\right)\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2+2ab+b^2-ab\right)-3ab\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2+b^2-ab\right)\)
\(a^3+b^3+c^3-3ab\)
\(=a^3+ab\left(a+b\right)+b^3-3ab\left(a+b\right)\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2+2ab+b^2-ab\right)-3ab\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2+b^2-ab\right)\)
phân tích đa thức thành nhân tử a(b3-c3)+b(c3-a3)+c(a3-b3)
Phân tích đa thức thành nhân tử:
a) M = ( a + b + c ) 3 - a 3 - b 3 - c 3 ;
b) N = a 3 + b 3 + c 3 - 3abc.
Phân tích đa thức sau thành nhân tử a 3 + b 3 + c 3 - 3 a b c
Phân tích đa thức thành nhân tử bằng phương pháp xét giá trị riêng: A= (a+b+c)3-a3-b3-c3
Phân tích đa thức thành nhân tử:
a) a 2 (b-c) + b 2 (c-a) + c 2 (a-b);
b) a 3 (b-c) + b 3 (c-a) + c 3 (a-b).
Phân tích đa thức thành nhân tử a3(c−b2)+b3(a−c2)+c3(b−a2)+abc(abc−1)
Phân tích đa thức thành nhân tử
a( b2 + c2 ) +b( c2 + a2 ) + c( a2 + b2 ) - 2abc - a3 - b3 - c3
o l m . v n
Phân tích đa thức thành nhân tử
a( b2 + c2 ) +b( c2 + a2 ) + c( a2 + b2 ) - 2abc - a3 - b3 - c3
Bài 1 : phân tích đa thức thành nhân tử.
3x2 + 2x – 1
x3 + 6x2 + 11x + 6
x4 + 2x2 – 3
ab + ac +b2 + 2bc + c2
a3 – b3 + c3 + 3abc
Phân tích đa thức sau thành nhân tử:
c ) a 3 – b 3 + 2 b – 2 a