phân tích đa thức thành nhân tử
a) \(x^4+x^3+2x^2+x+1\)
b) \(a^3+b^3+c^3-3abc\)
c) \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
d) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
e) \(8\left(x+y+z\right)^3+\left(x+y\right)^3-\left(y+z\right)^3-\left(z+x\right)^3\)
f) \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a. =\(\left(x^2+1\right).\left(x^2+x+1\right)\)
b = \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
c=\(\left(3z+3y\right)\left(x+y\right)\left(z-x\right)\)
d= \(3\left(ab+bc+ca\right)\)
2 câu còn lại mình ko biết
xin lỗi mình chỉ viết đc đáp án vì nó dài quá
\(\)\(x^4+x^3+2x^2+x+1\)
\(x^3+x+\left(x^4+2x^2+1\right)\)
\(x^3+x+\left(x^2+1\right)^2\)
\(x\left(x^2+1\right)+\left(x^2+1\right)^2\)
\(\left(x^2+1\right)\left(x+x+1\right)=\left(x^2+1\right)\left(2x+1\right)\)