Phân tích đa thức thành nhân tử:
1) \(a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2\)
2)\(a\left(b^2+c^2+bc\right)+b\left(c^2+a^2+ac\right)+c\left(a^2+b^2+ab\right)\)
3) \(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
Phân tích các đa thức sau thành nhân tử
a) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2-4c^2\)
b) \(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
c) \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2\)
d) \(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
Phân tích thành nhân tử:
a) \(\left(3x-1\right)^2-\left(5x+3\right)^2\)
b) \(\left(2x-y+4z\right)^2-\left(x+y-z\right)^2\)
c) \(\left(x^2+xy\right)^2-\left(x^2-xy-2y^2\right)\)
d) \(x^4-x^2-2x-1\)
e) \(x^2+25+10x-y^2-2y-1\)
f) \(x^2+4y-4xy-z^2+6z-9\)
g) \(x^2-3z\left(3z-2\right)-12xy-1+36y^2\)
h) \(4a^2b^2-\left(a^2+b^2-c^2\right)\)
l) \(x^3+3x^2-9x-27\)
i) \(x^{m+4}+x^{m+3}-x-1\)
Phân tích đa thức thành nhân tử
a) \(\left(x+1\right)^4+\left(x^2+x+1\right)^2\)
b) \(\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)
c) \(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)
d) \(\left(x^2-8\right)^2+36\)
Bài 1: Phân tích đa thức thành nhân tử:
a) \(2x\left(x+1\right)+2\left(x+1\right)\)
b) \(y^2\left(x^2+y\right)-zx^2-zy\)
c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\)
d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)
e) \(x^2-6xy+9y^2\)
f) \(x^3+6x^2y+12xy^2+8y^3\)
g) \(x^3-64\)
h) \(125x^3+y^6\)
k) \(0,125\left(a+1\right)^3-1\)
t) \(x^2-2xy+y^2-xz+yz\)
q) \(x^2-y^2-x+y\)
p) \(a^3x-ab+b-x\)
đ) \(3x^2\left(a+b+c\right)+36xy\left(a+b+c\right)+108y^2\left(a+b+c\right)\)
l) \(x^2-x-6\)
i) \(x^4+4x^2-5\)
m) \(x^3-19x-30\)
j) \(x^4+x+1\)
y) \(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
o) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
ê) \(4a^2b^2-\left(a^2+b^2+c^2\right)^2\)
w) \(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)
z) \(\left(x^2-8\right)^2+36\)
u) \(81x^4+4\)
Bài 2 : Tìm x
a)\(\left(2x-1\right)^2-25=0\)
b) \(8x^3-50x=0\)
c) \(\left(x-2\right)\left(x^2+2+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
d) \(3x\left(x-1\right)+x-1=0\)
e) \(2\left(x+3\right)-x^2-3x\) =0
f) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
phân tích đa thức thành nhân tử :
a) \(x^2+2xy+y^2+2x+2y-15\)
b) \(\left(x+â\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)
c) \(6x^4-11x^2+3\)
d) \(\left(x^2+x\right)+3\left(x^2+x\right)+2\)
e) \(x^2-2xy+y^2+3x-3y-10\)
1) Phân tích đa thức thành nhân tử:
\(\left(x+y\right)^3-x^3-y^3\)
2) Chứng minh rằng nếu:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)\(=\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2\) thì a=b=c
Bài 4: phân tích đa thức thành nhân tử
a)\(x^2y^2-1\)
b)\(x^4y^4-z^4\)
c)\(\)\(\left(x+a\right)^2-25\)
d)\(\left(x+a\right)^2-\left(y+b\right)^2\)
e)\(x^2+2x+1-y^2+2y-1\)
g)\(\left(x^2-2x+1\right)^3+y^6\)
h)\(x^4y^4-z^4\)
k)\(\left(x-a\right)^4+4a^4\)
a) \(x^2.\left(1-x^2\right)-4-4x^2\)
b)\(\left(1+2x\right)\left(1-2x\right)-\left(x+2\right)\left(x-20\right)\)
c)\(x^2+y^2-x^2y^2+xy-x-y\)