phân tích thành nhân tử:
a) \(27\left(a+b+c\right)^3\left(2a+3b-2c\right)^3-\left(2b+3c-2a\right)^3-\left(2c+3a-2b\right)^3\)
b)\(8\left(a+b+c\right)^3-\left(2a+b-c\right)^3-\left(2b+c-a\right)^3-\left(2c+a-b\right)^3\)
làm nhanh hộ mình. cảm ơn trước
cmr: (a+2b-3c)^3+(b+2c-3a)^3+(c+2a-3b)^3=3.(a+2b-3c).(b+2c-3a).(c+2a-3b)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ:\(\left(a+2b-3c\right)^3+\left(b+2c-3a\right)^3+\left(c+2a-3b\right)^3\)
HELP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho 3 số thực a,b,c thỏa mãn 27(a+b+c)3=(3a+b-c)3+(3b+c-a)3(3c+a-b)3+24
Tính (a+2b)(b+2c)(c+2a)
với a,b,c thuộc R thỏa mãn : (3a+3b+3c)^3=24+(3a+b-c)^3+(3b+c-a)^3+(3c+a-b)^3
CMR : (1+2a)(1+2b)(1+2c)=1
Cho a+b+c = 1 và 3a+2b>c, 3b+2c>a, 3c+2a>b. Chứng minh: 1/(3a+2b-c) + 1/(3b+2c-a) + 1/(3c+2a-b) >hoặc = 9/4
Phân tích:
\(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Cho a,b,c thỏa mãn (3a+3b+3c)3 = 24 + (3a+b-c)3 + (3b+c-a)3 + (3c+a-b)3 chứng minh (a+2b)(b+2c)(c+2a)=1
cho a,b,c khác 0 sao cho a^3b^3+b^3c^3+c^3a^3=2a^2b^2c^2 . Tính M=(1+a/b)(1+b/c)(1+c/a)
Cho:\(a\ge b\ge c\ge0.CMR:a^3b^2+b^3c^2+c^3a^2\ge a^2b^3+b^2c^3+c^2a^3\)