Đặt \(3a+b-c=x;3b+c-a=y;3c+a-b=z\)
\(\Rightarrow27\left(a+b+c\right)^3=\left[3\left(a+b+c\right)\right]^3=\left(x+y+z\right)^3\)
Biểu thức đã cho trở thành:
\(\left(x+y+z\right)^3=x^3+y^3+z^3+24\)
\(\Leftrightarrow\left(x+y+z\right)^3-x^3-y^3-z^3=24\)
\(\Leftrightarrow\left(x+y+z\right)^3-\left(x+y\right)^3+3xy\left(x+y\right)-z^3=24\)
\(\Leftrightarrow\left(x+y+z\right)^3-\left(x+y+z\right)^3+3xy\left(x+y\right)+3\left(x+y\right)z\left(x+y+z\right)=24\)
\(\Leftrightarrow3\left(x+y\right)\left(z^2+xy+yz+zx\right)=24\)
\(\Leftrightarrow3\left(x+y\right)\left[z\left(y+z\right)+x\left(y+z\right)\right]=24\)
\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)=24\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=8\)
\(\Leftrightarrow\left(3a+b-c+3b+c-a\right)\left(3b+c-a+3c+a-b\right)\left(3a+b-c+3c+a-b\right)=8\)
\(\Leftrightarrow\left(2a+4b\right)\left(2b+4c\right)\left(2c+4a\right)=8\)
\(\Leftrightarrow2\left(a+2b\right).2\left(b+2c\right).2\left(c+2a\right)=8\)
\(\Leftrightarrow8\left(a+2b\right)\left(b+2c\right)\left(c+2a\right)=8\)
\(\Leftrightarrow\left(a+2b\right)\left(b+2c\right)\left(c+2a\right)=1\)