Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thành Chung

Phân tích a^3+b^3+c^3-3abc thế từ đó suy ra điều kiện của a,b,c để a^3+b^3+c^3=3abc

Lê Song Phương
16 tháng 5 2023 lúc 19:56

\(a^3+b^3+c^3-3abc\) \(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ca-bc-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Vậy \(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

Vậy để \(a^3+b^3+c^3=3abc\) thì \(a+b+c=0\) hoặc \(a=b=c\)


Các câu hỏi tương tự
ha bau
Xem chi tiết
Mai Nguyễn Thị Lan
Xem chi tiết
hoaan
Xem chi tiết
huongkarry
Xem chi tiết
Tạ Hương Ly
Xem chi tiết
TítTồ
Xem chi tiết
shoppe pi pi pi pi
Xem chi tiết
oOo Chảnh thì sao oOo
Xem chi tiết
do trang
Xem chi tiết